X

Genetics and Genomics

By Dr. Jos T. Puthur   |   Dept. of Botany University of Calicut
Learners enrolled: 236
This course is designed in such a way that any biology student who has completed 10+2 is able to assimilate all modules included in this course.  It starts with a proper introduction to genetics and genomics, then with the sessions dealing classical genetics and further to sessions of advanced genetics. 
This will enable the students to understand how the hereditary information in DNA controls what an organism looks like and how it works.  The knowledge of genetics and genomics is also fundamental to an understanding of how organisms, populations and species evolve.  The course will help the student to take up further some upcoming and much sort after post graduate  courses based on the topics such as medical genetics, developmental and behavioural genetics, bioinformatics, environmental genetics, genomics etc.
 The course develops through the following topics:
    • Principle of Genetic Transmission
    • Extensions of Mendelism
    • Quantitative Genetics
    • The chromosomal basis of Mendelism
    • Chromosomal Variations & Linkage, Crossing over and chromosome mapping
    • Extranuclear Inheritance
    • Population Genetics and Evolution
    • Structure of Genetic Material
    • Replication of DNA &Molecular Mechanism of Recombination
    • Mutation
    • DNA Repair Mechanism  
    • Transcription and RNA Processing in prokaryotes and eukaryotes
    •  Genetic Code and Translation          
 Once a student complete this course, he/she will be a thorough with the classical and advanced genetics and will be equipped to take up any advanced post graduate programmes based on genetics such as  medical genetics, developmental and behavioural genetics, bioinformatics, environmental genetics, genomics etc.
Summary
Course Status : Upcoming
Course Type : Core
Language for course content : English
Duration : 12 weeks
Category :
  • Biological Sciences & Bioengineering
Credit Points : 4
Level : Undergraduate
Start Date : 01 Jan 2025
End Date : 04 Apr 2025
Enrollment Ends : 28 Feb 2025
Exam Date : 18 May 2025 IST
NCrF Level   : 5.0
Exam Shift :

Shift 2

Note: This exam date is subject to change based on seat availability. You can check final exam date on your hall ticket.


Page Visits



Course layout

WEEK - 1
History of Genetics, Scope and significance of genetics
Mendels’ Experiments, Symbols and terminology, Principle of dominance and segregation,
Principle of independent assortment, Mendelian inheritance and probability
  
WEEK - 2
Allelic variation and gene function- Incomplete dominance, co-dominance, multiple alleles
Gene action-from genotype to phenotype.
Gene interaction, penetrance, expressivity
Epistasis, pleiotropy, interaction with environment.
  
WEEK - 3
Continuous variation, Quantitative traits - additive alleles, calculating the number of polygenes, significance of polygenic control.
Heritability in broad sense and narrow sense ; Artificial selection. 

 
WEEK - 4
Chromosomes – chromosome number, sex chromosome
Chromosome theory of inheritance - Experimental evidence, non-disjunction as proof of chromosome theory, chromosomal basis of Mendel’s principles of segregation and independent assortment. 
Sex linked genes in humans - Haemophilia, colour blindness, fragile X.
Dosage compensation of X- linked genes.
Hyper activation of X-linked gene in male drosophila, Inactivation of X-linked gene in female. 
 Sex chromosome and sex determination - Human, Drosophila, other animals.

WEEK - 5
Morphology of chromosomes, Structural and Numerical Variations 
Linkage, Recombination, Crossing over (Mitotic crossing over)
Chromosome mapping (two point and three point test cross)
Tetrad analysis. 

WEEK - 6
Maternal Inheritance, Mitochondrial- Snail, poky and petite
Chloroplast – leaf variegation in Mirabilis jalapa, Lojap. 

WEEK - 7
Population and gene pool - Allelic frequency, Hardy – Weinberg law - _ Changes in genetic structure of population
Mutation, genetic drift (causes and effect), migration, natural selection.
Non-random mating (heterosis)
 
WEEK - 8
Introduction – Nature of Genetic material- Discovery of DNA as genetic material
(Griffith, Avery, Hershey Chase)
Strucutre of nucleic acid (A, B and Z model), Super coiling and Topoisomerase,
Types of RNA- Structural and functional. 

WEEK - 9
Salient features of prokaryotic and eukaryotic DNA replication. 
Homologous recombination, Site specific recombination.
Models of recombination (Holiday model, Double strand break, etc.) 

WEEK - 10
Types of mutation, Causes of mutation - Physical and chemical mutagens 
Spontaneous and Induced mutations
Molecular basis of mutations

WEEK - 11
Excision Mechanism – Nucleotide, Base
Post Replication Repair- mismatch repair, recombination repair, SOS repair. 
Central Dogma, Transcription in prokaryotes, eg: Lac, Tryp operon.

WEEK - 12
Transcription in eukaryotes, RNA processing – nuclear splicing
rRNA and tRNA processing 

WEEK - 13
Salient features of genetic code
Translation in prokaryotes  
Translation in eukaryotes, Post-translational modification 

Books and references

1. Genetics – Principle and Analysis – Hart and Jones. 
2. Genetics – Peter J. Russell. 
3. Principles of Genetics – Snustad and Simmons. 
4. Genetics – A Continuity of Life– Daniel J. Fairbanks, W. Ralph Anderson
5. Concepts of Genetics– Klug and Cummings. 
6. Modern Genetic Analysis – Griffth Genetics – 
7. A Continuity of Life – Daniel Fairbanks, Ralph Anderson. 
8. Concepts of Genetics – Klug and Cummings. 
9. Principles of Genetics – Hartt and Jones, Genetics Fairbanks, Ralph. Anderson.

Instructor bio

Dr. Jos T. Puthur

Dept. of Botany University of Calicut
Dr. Jos T. Puthur is Professor in Dept. of Botany, University of Calicut. His area of research interest is a) Osmoregulation, Biochemical and Molecular Responses of Plants to Abiotic Environmental Stresses and b) Genomics of plants subjected to Abiotic Environmental Stresses. He is teaching PG course of Applied Plant sciences. He has got 17 years of PG and MPhil teaching experiences. Has guided 8 students for PhD and 6 students for MPhil. Has got post doctoral experience at Hungary and Germany. He is a BOYSCAST awardee of DST and Fast Track Young Scientist Project awardee of DST. He has successfully completed 5 major research projects.

Course certificate

30 Marks will be allocated for internal assessment and 70 Marks will be allocated for end term proctored examination. Securing 40% in both separately is mandatory to pass the course and get Credit Certificate.


MHRD logo Swayam logo

DOWNLOAD APP

Goto google play store

FOLLOW US