X

Group Theory I

By Dr. Ragi Puthan Veettil   |   Pazhassi Raja NSS college, Mattanur
Learners enrolled: 459
The course “Group Theory I” is proposed for B.Sc. (Hons) Mathematics.  The course starts with the overview of binary operations on a set, the definition of groups, cyclic groups, groups of symmetries of  a square, the external direct product of groups, normal subgroups, homomorphism, the kernel of homomorphisms, Isomorphisms, and the three isomorphism theorems
Summary
Course Status : Upcoming
Course Type : Core
Language for course content : English
Duration : 12 weeks
Category :
  • Mathematics
Credit Points : 5
Level : Undergraduate
Start Date : 07 Jul 2025
End Date : 05 Oct 2025
Enrollment Ends : 31 Aug 2025
Exam Date : 13 Dec 2025 IST
NCrF Level   : 5.5
Exam Shift :

Shift 1

Note: This exam date is subject to change based on seat availability. You can check final exam date on your hall ticket.


Page Visits



Course layout

Weeks Weekly Lecture Topics (Module Titles)

1 Day 1 Module 1: Binary Operations
Day 2 Module 2: Introduction to Groups
Day 3 Module 3: More Examples to Groups
Day 4 Module 4 : Elementary properties of Groups

2 Day 1 Module 5 : Subgroups
Day 2 Module 6 : Cyclic Groups
Day 3 Module 7 : Properties of Cyclic Groups
Day 4 Module 8 : Classification of Subgroups of Cyclic Groups

3 Day 1 Module 9 : Problems on subgroups of cyclic group
Day 2 Module 10 : Order of an element
Day 3 Module 11 : : Permutation Groups
Day 4 Module 12 Symmetric Group S_n
Day 5 Assignment

4 Day 1 Module 13 : Orbits and Cycles
Day 2 Module 14 : On Cyclic Permutations
Day 3 Module 15 : Permutation as product of Transpositions
Day 4 Module 16 : Alternating Groups A_n

5 Day 1 Module 17 : Generating Sets of S-n and A_n
Day 2 Module 18 : Conjugate Elements,Conjugacy Class
Day 3 Module 19 : Conjugacy in S_n
Day 4 Module 20 : The Dihedral Group

6 Day 1 Module 21 : Quaternion Group
Day 2 Module 22 : Some Problems of Permutation Group
Day 3 Module 23: Cosets
Day 4 Module 24 : Lagrange's Theorem
Day 5 Assignment

7 Day 1 Module 25 : Fermat's Theorem
Day 2 Module 26 : External Direct Product -Part I
Day 3 Module 27: External Direct Product -Part II
Day 4 Module 28 : Group Homomorphism -Part I

8 Day 1 Module 29 : Properties of Homomorphism
Day 2 Module 30 : Group Homomorphism -Part II
Day 3 Module 31 : Normal Subgroups
Day 4 Module 32 : Kernel of a Homomorphism-Part I

9 Day 1 Module 33: Kernel of a Homomorphism-Part II
Day 2 Module 34 : Index of a Subgroup
Day 3 Module 35 : Factor Groups-Part I
Day 4 Module 36 :Factor Groups-Part II
Day 5 Assignment

10 Day 1 Module 37 : Examples of Normal Subgroups
Day 2 Module 38 : Problems in Cosets and Factor Groups
Day 3 Module 39 : Cauchy's Theorem
Day 4 Module 40 : Group Isomorphism
Day 5 Assignment

11 Day 1 Module 41 : Properties of Isomorphism
Day 2 Module 42 : The First Isomorphism Theorem
Day 3 Module 43 : Prerequisites for Second Isomorphism Theorem
Day 4 Module 44 : Second Isomorphism Theorem

12 Day 1 Module 45 : Third Isomorphism Theorem
Day 2 Module 46 : Cayley's Theorem
Day 3 Module 47 : Product of Subgroups
Day 4 Module 48 : Center of a Group

13 Day 1 Module 49 : Centralizer of an element
Day 2 Module 50 : Normalizer of a subgroup
Day 3 Module 51: Commutator Subgroup
Day 4 Assignment

Books and references

1.  John B Fraleigh, A first Course in Abstract Algebra,7th edition,Pearson,2002.
2.  Joseph A Gallian, Contemporary Abstract Algebra,4th edition,Narosa Publishing House,New Delhi,1999.

Instructor bio

Dr. Ragi Puthan Veettil

Pazhassi Raja NSS college, Mattanur
12 years of experience in teaching both Undergraduate and post-graduate level Mathematics.
Awarded M.Phil. from the Kerala University in 2011  Completed a Minor Research Project funded by UGC during 2015-2017.
Awarded PhD from Kannur University in Graph Theory, in 2022.

Course certificate

* Internal Assessment- Weekly assessments released in the course shall be considered for Internal Marks and will carry 30 percent for the  Overall Result. Out of all weekly assignments, the best/top five scores will be considered for the final Internal Assessment marks.

* End-term Assessment-The final exam shall be conducted by NTA, and will carry 70 percent for the overall Result.

* All students who obtain 40% marks in the internal assessment and 40% marks in the end-term proctored exam separately will be eligible for the SWAYAM Credit Certificate.


MHRD logo Swayam logo

DOWNLOAD APP

Goto google play store

FOLLOW US