X

Group Theory I

By Dr. Ragi Puthan Veettil   |   Pazhassi Raja NSS college, Mattanur
Learners enrolled: 67
The course “Group Theory I” is proposed for B.Sc. (Hons) Mathematics.  The course starts with the overview of binary operations on a set, the definition of groups, cyclic groups, groups of symmetries of  a square, the external direct product of groups, normal subgroups, homomorphism, the kernel of homomorphisms, Isomorphisms, and the three isomorphism theorems
Summary
Course Status : Upcoming
Course Type : Core
Language for course content : English
Duration : 12 weeks
Category :
  • Mathematics
Credit Points : 5
Level : Undergraduate
Start Date : 07 Jul 2025
End Date : 05 Oct 2025
Enrollment Ends : 31 Aug 2025
Exam Date :
NCrF Level   : 5.5

Page Visits



Course layout

Weeks Weekly Lecture Topics (Module Titles)

1 Day 1 Module 1: Binary Operations
Day 2 Module 2: Introduction to Groups
Day 3 Module 3: More Examples to Groups
Day 4 Module 4 : Elementary properties of Groups

2 Day 1 Module 5 : Subgroups
Day 2 Module 6 : Cyclic Groups
Day 3 Module 7 : Properties of Cyclic Groups
Day 4 Module 8 : Classification of Subgroups of Cyclic Groups

3 Day 1 Module 9 : Problems on subgroups of cyclic group
Day 2 Module 10 : Order of an element
Day 3 Module 11 : : Permutation Groups
Day 4 Module 12 Symmetric Group S_n
Day 5 Assignment

4 Day 1 Module 13 : Orbits and Cycles
Day 2 Module 14 : On Cyclic Permutations
Day 3 Module 15 : Permutation as product of Transpositions
Day 4 Module 16 : Alternating Groups A_n

5 Day 1 Module 17 : Generating Sets of S-n and A_n
Day 2 Module 18 : Conjugate Elements,Conjugacy Class
Day 3 Module 19 : Conjugacy in S_n
Day 4 Module 20 : The Dihedral Group

6 Day 1 Module 21 : Quaternion Group
Day 2 Module 22 : Some Problems of Permutation Group
Day 3 Module 23: Cosets
Day 4 Module 24 : Lagrange's Theorem
Day 5 Assignment

7 Day 1 Module 25 : Fermat's Theorem
Day 2 Module 26 : External Direct Product -Part I
Day 3 Module 27: External Direct Product -Part II
Day 4 Module 28 : Group Homomorphism -Part I

8 Day 1 Module 29 : Properties of Homomorphism
Day 2 Module 30 : Group Homomorphism -Part II
Day 3 Module 31 : Normal Subgroups
Day 4 Module 32 : Kernel of a Homomorphism-Part I

9 Day 1 Module 33: Kernel of a Homomorphism-Part II
Day 2 Module 34 : Index of a Subgroup
Day 3 Module 35 : Factor Groups-Part I
Day 4 Module 36 :Factor Groups-Part II
Day 5 Assignment

10 Day 1 Module 37 : Examples of Normal Subgroups
Day 2 Module 38 : Problems in Cosets and Factor Groups
Day 3 Module 39 : Cauchy's Theorem
Day 4 Module 40 : Group Isomorphism
Day 5 Assignment

11 Day 1 Module 41 : Properties of Isomorphism
Day 2 Module 42 : The First Isomorphism Theorem
Day 3 Module 43 : Prerequisites for Second Isomorphism Theorem
Day 4 Module 44 : Second Isomorphism Theorem

12 Day 1 Module 45 : Third Isomorphism Theorem
Day 2 Module 46 : Cayley's Theorem
Day 3 Module 47 : Product of Subgroups
Day 4 Module 48 : Center of a Group

13 Day 1 Module 49 : Centralizer of an element
Day 2 Module 50 : Normalizer of a subgroup
Day 3 Module 51: Commutator Subgroup
Day 4 Assignment

Books and references

1.  John B Fraleigh, A first Course in Abstract Algebra,7th edition,Pearson,2002.
2.  Joseph A Gallian, Contemporary Abstract Algebra,4th edition,Narosa Publishing House,New Delhi,1999.

Instructor bio

Dr. Ragi Puthan Veettil

Pazhassi Raja NSS college, Mattanur
12 years of experience in teaching both Undergraduate and post-graduate level Mathematics.
Awarded M.Phil. from the Kerala University in 2011  Completed a Minor Research Project funded by UGC during 2015-2017.
Awarded PhD from Kannur University in Graph Theory, in 2022.

Course certificate

* Internal Assessment- Weekly assessments released in the course shall be considered for Internal Marks and will carry 30 percent for the  Overall Result. Out of all weekly assignments, the best/top five scores will be considered for the final Internal Assessment marks.

* End-term Assessment-The final exam shall be conducted by NTA, and will carry 70 percent for the overall Result.

* All students who obtain 40% marks in the internal assessment and 40% marks in the end-term proctored exam separately will be eligible for the SWAYAM Credit Certificate.


MHRD logo Swayam logo

DOWNLOAD APP

Goto google play store

FOLLOW US